Table 2. Final positional and thermal parameters with e.s.d.'s $\left(\right.$ all $\left.\times 10^{4}\right)$

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Co	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{4}\right)$	$45(2)$	$\left(=\beta_{11}\right)$	$\left(=\beta_{11}\right)$	$4(4)$	$\left(=\beta_{12}\right)$	$\left(=\beta_{12}\right)$
As	(0)	$3431(1)$	$1503(1)$	$27(1)$	$35(1)$	$32(1)$	(0)	(0)	$2(3)$

Fig. 2. Oftedal's relation versus ideal octahedral symmetry, with phosphide structures from Rundqvist \& Ersson (1968).

Three quantities are of particular interest in discussing the structure: the Co-As distance, the distortion of the As_{4} groups from a square, and the degree of distortion of the CoAs_{6} octahedron. For the two As-As distances equal, $2(y+z)=1$. This trival equation has been called the Oftedal relation. For regular octahedral coordination about the Co atom, the parameters y and z for the As atoms must satisfy the relation $y(2 z-1)=z-\frac{3}{8}$. Deviation from this relationship leads to a trigonal antiprismatic distortion from octahedral symmetry. The distances for the Oftedal structure are $\mathrm{Co}-\mathrm{As}=2.35 \AA$, and $\mathrm{As}-\mathrm{As}=2.45 \AA$. Ventriglia's distances are $\mathrm{Co}-\mathrm{As}=2.23 \AA$, As-As $=2.55$ and $4.09 \AA$. Ventriglia stated that these distances agreed better with experimental data, but gave no observed or calculated structure factors. The distances found in the present study are $\mathrm{Co}-\mathrm{As}=2.334 \pm 0.001 \AA$, As-As $=2.572 \pm 0.002$ and $2 \cdot 464 \pm 0.002 \AA$. The two As-Co-As angles in the octahedron are 95.4 and $84 \cdot 6^{\circ}$. Fig. 2 shows the relation between y and z for regular octahedral coordination and for equal As-As distances. Note, as was also pointed out by Rundqvist \& Ersson (1968), that both 'ideal' conditions cannot be realized simultaneously without a change in the structure type, as mentioned below.

Following the discussion of Rundqvist \& Ersson (1968), an increasing trigonal distortion of the ideal octahedral symmetry of the ligands about the Co atoms presumably
leads to a less favorable energetic situation as regards the Co-As bonds. On the other hand, a departure from the Oftedal relation, which means an elongation of two of the As-As bonds, probably leads to a less favorable bonding in the As_{4} rings. As seen in Fig. 2, Oftedal's relation and the condition for ideal octahedral symmetry cannot be simultaneously fulfilled, except for a drastic structural change to the ReO_{3}-type structure. This condition occurs at the intersection of the extension of the two lines in Fig. 2, at $y=$ $z=\frac{1}{4}$. Since the presence of As-As bonding is apparently essential for the stability of the compounds, a compromise is reached between the two opposing factors.

Note that in the skutterudite-type phosphides, the shorter $\mathbf{P}-\mathbf{P}$ bond distance is virtually constant at $2 \cdot 23 \pm$ $0.01 \AA$ which corresponds well with the $\mathrm{P}-\mathrm{P}$ distances of $2.21 \AA$ in P_{4} and $2.25 \AA$ in $P_{4} S_{3}$ (Sutton, 1958). In skutterudite itself the shorter As-As distance of $2.46 \AA$ is in good agreement with distances of $2.45 \AA$ in $\left(\mathrm{AsCF}_{3}\right)_{4}$ (Mandel \& Donohue, 1971), $2 \cdot 43 \AA$ in $\left(\mathrm{AsCH}_{3}\right)_{5}$ (Burns \& Waser, 1957), $2.46 \AA$ in $\left(\mathrm{AsC}_{6} \mathrm{H}_{5}\right)_{6}$ (Hedberg, Hughes \& Waser, 1961), and of $2.44 \AA$ in gaseous As_{4} (Maxwell, Hendricks \& Moseley, 1935).

This work was supported by the National Science Foundation and by the Advanced Research Projects Agency.

References

Burns, J. H. \& Waser, J. (1957). J. Amer. Chem. Soc. 79, 859.

Hedberg, K., Hughes, E. W. \& Waser, J. (1961). Acta Cryst. 14, 369.
International Tables for X-ray Crystallography (1967). Vol. II, p. 300. Birmingham: Kynoch Press.
International Tables for X-ray Crystallography (1968). Vol. III, p. 201. Birmingham: Kynoch Press.
Mandel, N. \& Donohue, J. (1971). Acta Cryst. B27, 476.
Maxwell, L. R., Hendricks, S. B. \& Moseley, V. M. (1935). J. Chem. Phys. 3, 699.

Oftedal, I. (1928). Z. Kristallogr. A 66, 517.
Rundqvist, S. \& Ersson, N. O. (1968). Ark. Kemi, 30, 103.
Sutton, L. E. (1958). Tables of Interatomic Distances and Configuration in Molecules and Ions. London: The Chemical Society.
Ventriglia, U. (1957). Period. Miner. 26, 345.

Acta Cryst. (1971). B27, 2289

A simple 'direct' solution of the crystallographic phase problem. By A. L. Macdonald, J. M. Robertson and
 J. C. Speakman, Chemistry Department, The University, Glasgow W.2, Scotland

(Received 2 July 1971)
The 'difference' Patterson function, based on neutron-diffraction data, between a hydrogen compound and its deuteriate led to a direct, and absolute, structure determination.

We have recently completed precise structure analyses of potassium hydrogen di-trifluoroacetate, $\mathrm{KH}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}$, and
its deuteriate, $\mathrm{KD}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)_{2}$, based on full neutron-diffraction data (Macdonald \& Speakman, 1971). We then com-
puted the 'difference' Patterson function, with coefficients ($F_{\mathrm{D}}^{2}-F_{\mathrm{H}}^{2}$), where $\left|F_{\mathrm{D}}\right|$ and $\left|F_{\mathrm{H}}\right|$ are the respective neutron structure amplitudes, each on an absolute scale. The outcome is represented on the left-hand side of Fig. 1.

As these acid salts are almost identically isomorphous, as the single hydrogen atom lies at a centre of symmetry ($I 2 / a, Z=4$), and as the neutron-scattering lengths of D and H are +6.5 and -3.8 fermi, the map shows a complete image of the structure. The nine peaks shown are the nine highest, and only significant, independent peaks of the Patterson function. (The peak representing the hydrogen atom has a poor profile in the y direction, but this (origin) peak is sensitive to slight errors in the data.)

This exercise is a logical, and obvious, extension of a method of absolute structure determination developed in the 1930's (Beevers \& Lipson, 1934; Robertson, 1936; Robertson \& Woodward, 1940). Whether we refer to the heavy-atom method or to that of isomorphous replacement may be debated. We prefer to regard the 'difference atom', (D-H), as 'heavy', with a scattering power of $+10 \cdot 3$ fermi.

A crystal belonging to the space group $I 2 / a$ yields a vector pattern in $I 2 / \mathrm{m}$; hence any image of the true structure is doubled by a mirror-plane. Fortunately all the atoms are free from overlap except for the one oxygen atom which, consequently, has a peak of nearly double height. So we easily recognize an acceptable molecule in a correct position in the cell. The mirror ambiguity would equally have compromised the absolute structure determination of platinum phthalocyanine $\left(P 2_{1} / a \rightarrow P 2 / m\right)$ had it been possible, at the time, to apply the method three-dimensionally.

Fig. 1. On the left'hand side are sections from the three-dimensional 'difference' Patterson function, with positive contours at $4,6,8 \ldots$ in arbitrary units. On the right is the crystal structure established and refined by normal X-ray and neutron diffraction analysis. (The asterisk symbolizes a centre of inversion at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$.)

References

Beevers, C. A. \& Lipson, H. (1934). Proc. Roy. Soc. A 146, 570.

Macdonald, A. L. \& Speakman, J. C. (1971). J. Chem. Soc. To be published. (See also Golić, L. \& Speakman, J. C. (1965). J. Chem. Soc. p. 2530.)

Robertson, J. M. (1936). J. Chem. Soc. p. 1195.
Robertson, J. M. \& Woodward, I. (1940). J. Chem. Soc. p. 36.

Acta Cryst. (1971). B27, 2290
The crystal structure of $\mathbf{K}_{\mathbf{7}} \mathbf{T h}_{\mathbf{6}} \mathbf{F}_{31}{ }^{*}$ * By George Brunton, Reactor Chemistry Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37830, U.S.A.
(Received 26 April 1971)
The complex fluoride $\mathrm{K}_{7} \mathrm{Th}_{6} \mathrm{~F}_{31}$ is isostructural with $\mathrm{Na}_{7} \mathrm{Zr}_{6} \mathrm{~F}_{31}$. It is trigonal, $R \overline{3}$, with hexagonal axes $a_{0}=15.293$ (2) and $c_{0}=10.449$ (2) $\AA, Z=3$ and $\varrho_{\text {cal }}=5.307 \mathrm{~g}_{\mathrm{cm}}{ }^{-3}$. The eight $\mathrm{Th}-\mathrm{F}$ distances range from 2.24 (1) to 2.41 (1) \AA. The K-F distances range from 2.63 (2) to 3.36 (2) \AA.

The structure of $\mathrm{K}_{7} \mathrm{Th}_{6} \mathrm{~F}_{31}$ is identical to that of $\mathrm{Na}_{7} \mathrm{Zr}_{6} \mathrm{~F}_{31}$ (Burns, Ellison \& Levy, 1968) and was determined to con-

* Research sponsored by the U.S. Atomic Energy Commission under contract with the Union Carbide Corporation.
firm the supposition that all 7AF. $6 \mathrm{MF}_{4}$ complexes are probably isostructural, $\left(\mathrm{A}=\mathrm{Na}, \mathrm{K}, \mathrm{Rb}\right.$ and NH_{4}, and $M=$ most of the tetravalent lanthanides and actinides) (Thoma, 1962).

The reflection data were collected from an ellipsoidal

Table 1. Lattice and atomic parameters for $\mathrm{K}_{7} \mathrm{Th}_{6} \mathrm{~F}_{31}$
Space group $R \overline{3}, a_{0}=15 \cdot 293$ (2), $c_{0}=10 \cdot 449$ (2) $\AA, Z=3$, $\varrho_{\text {cal }}=5.307{\mathrm{~g} . \mathrm{cm}^{-3}}$.
Standard errors in parentheses, corresponding to the last significant digit, are given by the variance-covariance matrix.

	x	y	z	* $\beta_{11} \times 10^{4}$	$\beta_{22} \times 10^{4}$	$\beta_{33} \times 10^{4}$	$\beta_{12}=10^{4}$	$\beta_{13} \times 10^{4}$	$\beta_{23} \times 10^{4}$
K(1)	0.0824 (4)	$0 \cdot 3088$ (4)	0.4948 (5)	30 (3)	37 (3)	53 (4)	20 (2)	-4 (3)	1 (3)
K(2)	0	0	$\frac{1}{2}$	26 (4)	β_{11}	37 (8)	(${ }_{2} \beta_{11}$)	0	
Th	$0 \cdot 18917$ (4)	0.05122 (4)	$0 \cdot 17732$ (6)	16 (1)	14 (1)	24 (1)	7 (1)	1 (1)	1 (1)
F(1)	0.3548 (7)	$0 \cdot 1126$ (7)	0.0938 (9)	1.4 (2) \dagger					
F(2)	$0 \cdot 1834$ (8)	0.0551 (8)	0.392 (1)	$1 \cdot 8$ (2)					
F(3)	$0 \cdot 2747$ (8)	0.3717 (8)	$0 \cdot 425$ (1)	$1 \cdot 7$ (2)					
F(4)	$0 \cdot 2103$ (9)	$0 \cdot 1602$ (9)	0.004 (2)	$2 \cdot 8$ (3)					
F(5)	$0 \cdot 2442$ (9)	0.544 (1)	0.446 (2)	$2 \cdot 9$ (3)					
F(6)	0	0	0.03 (2)	10 (6)					

${ }^{*}$ Coefficients in the temperature factor: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$.
\dagger Isotropic B.

